

XRF 176

QUANTITATIVE ANALYSES OF TITANIUM ALLOYS

USING MULTI-ELEMENT SIMULTANEOUS X-RAY FLUORESCENCE SPECTROMETER "SIMULTIX 12"

INTRODUCTION

Since Ti alloys are light, strong and corrosion resistant, they are widely used for structural materials for airplanes, space development, heat exchangers for power generation, scientific plants and other materials.

Described below are examples of analyses using the Simultix 12, which can analyze Ti alloys quickly and with high precision:

I. INSIKUMEN	I AND MEA	ASUMING (N D							
Instrument	: Multi-element simultaneous X-ray fluorescence spectrometer										
	Simultix 12										
X-Ray Tube	-Ray Tube : Rh target end window type										
Excitation Condition : 50kV - 70mA											
Analysis Line	Mn	Cr	Cu	Мо	Fe	Al					
Attenuator	Out	Out	Out	Out/In*	Out	Out					
Analyzing	$\mathbf{L} : \mathbf{E}(200)$	$\mathbf{L} = \mathbf{E}(200)$	LiF(200)	LiF(200)	LiF(200)	PET					
Crystal	LIF(200)	LIF(200)									
Detector	S-PC	S-PC	S-PC	SC	S-PC	S-PC					
Analysis Line	V**	Sn	Si	Zr	Ni	Ti					
Attenuator	Out	Out	Out	Out	Out	In					
Analyzing	$I_{i} = (200)$	I = (200)	DV4	I = (200)	I = (200)	I = (200)					
Crystal	LIF(200)	LIF(200)	КА4	LIF(200)	LIF(200)	LIF(200)					
Detector	S-PC	SC	S-PC	SC	S-PC	S-PC					
* Samples with concentrations of 1 mass% or less were measured with "Attenuator											

* Samples with concentrations of 1 mass% or less were measured with "Attenuator: Out".

** Vanadium was measured using a goniometer for Ti alloy analyses and a standard general-purpose goniometer.

1. INSTRUMENT AND MEASURING CONDITIONS

2. STANDARD SAMPLES

	Sample Name	Kind
	641	8Mn (A)
	642	8Mn (B)
	643	8Mn (C)
	644	2Cr-2Fe-2Mo (A)
NIST	645	2Cr-2Fe-2Mo (B)
	646	2Cr-2Fe-2Mo (C)
	654b	6A1-4V
	1128	15V-3A1-3Cr-3Sn
	1133	5Al-2Sn-2Zr-4Cr-4Mo
	174A	T1-CP-4
	175A	6A1-4V
IARM'S TM	176A	6A1-4VELI
	177A	6AL-2Sn-4Zr-2Mo
	178A	6A1-6V-2Sn

3. SAMPLE PREPARATION

Each sample was ground using a belt surfacer with $Al_2O_3 \# 240$.

4. CALIBRATION CURVES

As for Mo, no problem arises for samples with concentrations of 1 mass% or less, but the counting loss of the detector occurs in a range exceeding 1 mass%. To suppress this counting loss, analyses were made using the "automatic calibration curve selection function", which automatically selects a calibration curve (measuring condition) for an analysis from one that uses the attenuator and one that does not.

Calibration Curve for Mo (Acc.: 0.022 mass%) Samples with concentrations less than 1 mass% were measured without the attenuator.

Calibration Curve for Mo (Acc.: 0.027 mass%) Samples with concentrations of 1 mass% or the more were measured with the attenuator (1/32).

To analyze trace vanadium, by using a dedicated goniometer with higher angular resolution, an overlap correction coefficient for the Ti-K β 1 spectrum line can be made smaller and analyses can be made more accurately than when a standard vanadium goniometer is used.

Prepared calibration curves are shown below:

Calibration Curve for V (Goniometer for Ti Alloys) (Acc.: 0.045 mass%)

编集进行

M9 V

Ē 500

800

分析線 V-KA

Calibration Curve for Mn (Acc.: 0.011 mass%)

Calibration Curve for Cu (Acc.: 0.062 mass%)

Calibration Curve for Cr (Acc: 0.01mass%) Overlap correction with V is required.

Calibration Curve for Fe (Acc.: 0.013 mass%)

Calibration Curve for Al (Acc.: 0.036 mass%)

Calibration Curve for Si (Acc.: 0.00056 mass%)

Calibration Curve for Ni (Acc.: 0.00085 mass%)

Calibration Curve for Sn (Acc.: 0.078 mass%) Matrix correction with Zr, Cu, Al, Mo and V is required.

Calibration Curve for Zr (Acc.: 0.056 mass%)

Calibration Curve for Ti (Acc.: 0.15 mass%) Matrix correction with Mo, Sn, Zr and V is required.

5. CHECKING OF REPRODUCIBILITY

_	·							(Unit: 1	mass%)
Element	Mo	Fe	Al	V (*1)	V	Sn	Si	Zr	Ni
Standard Value	2	0.045	5.87	0.006	0.006	1.97	0.089	4.05	0.007
Average	1.98	0.043	5.85	0.0073	0.00015	1.99	0.089	4.08	0.009
Standard Deviation	0.0009	0.0003	0.0032	0.0005	0.00018	0.0008	0.00035	0.0012	0.00011
Coefficient of Variation	0.045	0.72	0.053	7.37	120	0.041	0.39	0.030	1.22

Sample: 177A (6Al-2Sn-4Zr-2Mo)

*1: About Goniometer Exclusively for Ti Alloy Analyses

Since Ti-K β 1 overlaps with V-K α , an optical system (goniometer exclusively for Ti alloy analyses) with higher resolution is used. This improves the accuracy for trace V as can be seen at "V (*1)" in the above table. However, since resolution is inversely proportional to sensitivity, sensitivity lowers a little when this optical system is used.

Sample: NIST1128

(Unit: mass%)

						(01	it: inass/0)
Element	Cr	Fe	Al	V (*1)	V	Sn	Ti
Standard Value	2.96	0.134	3.05	15.13	15.13	3.04	75.96
Average	2.96	0.125	3.07	15.13	15.13	3.04	75.65
Standard Deviation	0.0019	0.00046	0.0023	0.0092	0.0049	0.0010	0.015
Coefficient of Variation	0.06	0.37	0.074	0.061	0.032	0.034	0.02

Sample: NIST1133

(Unit: mass%)

Element	Мо	Fe	Al	Sn	Si	Zr	Ti
Standard Value	3.72	0.144	5.13	1.98	0.027	1.84	87.16
Average	3.75	0.144	5.13	1.98	0.019	1.84	87.14
Standard Deviation	0.0013	0.00049	0.0029	0.00081	0.00014	0.00098	0.017
Coefficient of Variation	0.034	0.34	0.057	0.041	0.75	0.053	0.019

6. CONCLUSION

From the analysis results of NIST standard samples shown above, accuracy can be checked using differences between the standard values and the average values, and precision can be checked using the standard deviations and coefficients of variation.

By using a multi-element simultaneous X-ray fluorescence spectrometer, high precision analyses can be made more quickly and accurately.

Memo:

Rigaku Corporation

4-14-4 Sendagaya, Shibuya-ku Tokyo 151-0051, Japan TEL: 81-3-3479-0618 FAX: 81-3-3479-6112

Rigaku Industrial Corporation

14-8 Akaoji-cho, Takatsuki-shi Osaka 569-1146, Japan TEL: 81-72-693-7991 FAX: 81-72-693-8066