

Automated nanoparticle production

VSP-G1 NANOPARTICLE GENERATOR

At VSPARTICLE we believe that there is a whole new world of possibilities for materials at the nanoscale.

At VSPARTICLE we make the manufacturing of nanostructured materials as easy as pushing a button. We provide research and industry with the tools to rapidly advance the field of nanotechnology and thereby drastically reduce the development time of new materials and products.


Create the future at the push of a button

vsparticle

Easier, faster and reproducible generation of nanoparticles

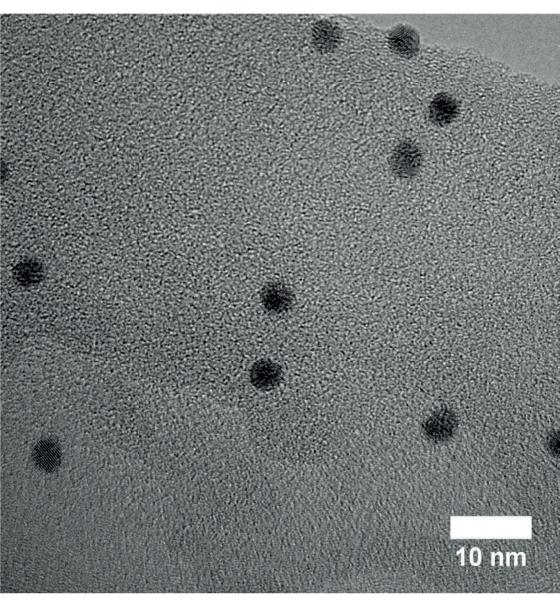
The current methods to generate nanoparticles are complex and time consuming. Furthermore, the lack of material versatility is an issue. With the VSP-G1 researchers can reduce months of work to just a matter of hours or days.

- **Easy**: The VSP-G1 is controlled by just three buttons. One serves as on/off switch and emergency stop, the other two are used to alter the particle size and production rate. The VSP-G1 is operated at room temperature and standard pressure.
- **Reproducible**: The VSP-G1 has a stable and reproducible output. With quick iterations you can find your ideal settings and there is nothing that stops you from reproducing it the next day.
- **Fast:** Combining the VSP-G1 with accessories enables you to prepare your nanoparticle sample in a single step. Just load your sample in the sample holder accessory, start the gas flow and press the spark-button of the VSP-G1.
- **Safe**: One of the key challenges in the development of the VSP-G1 was to enable flexibility and at the same time guaranteeing safe handling of nanoparticles. The VSP-G1 has been designed as a closed system and by making it possible to unmount the reactor chamber, it can be cleaned easily and safely in a fume hood.

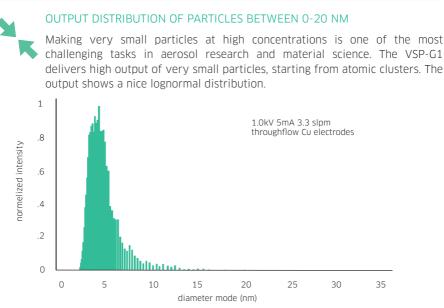
Designed for desktop use

THE VSP-G1 FITS ANY LAB TABLE AND CAN OPERATE 24/7

The VSP-G1 nanoparticle generator provides you with the possibility to perform ground-breaking research by automating the production of nanoparticles. It allows you to move through the research cycle quickly, fast forwarding from hypothesis to success!

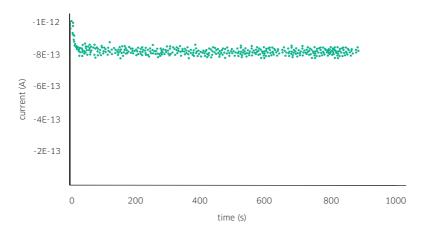

Best-in-class user experience

GENERATE NANOPARTICLES WITH THE PUSH OF A BUTTON


The VSP-G1:

- is intuitive for scientists and students
- allows for quick iterations to speed up research
- minimizes setup time
- logs settings via the RS232 port on the back
- fits your lab-table and fume hood

TEM image with single gold spherical particles which are well dispersed and generated with the VSP-G1.


Very small particles at high concentrations

Ultra-stable and reliable aerosol output

<2% STANDARD DEVIATION IN LONG-TERM EXPERIMENTS

After finding the equilibrium state of the desired concentration and particle size, the source has a highly reliable production output, with a standard deviation of <2%. This will help your research by offering reproducible results over long term experiments.

Material versatility

MIX AND MATCH YOUR METALS

All solid (semi)conductive materials that can be processed into electrodes can be used in this device. This allows for the creation of particles of bi-metals, nano-alloys or materials that are immiscible in bulk state. To make your life easy we provide standard electrodes, contact us for available stock.

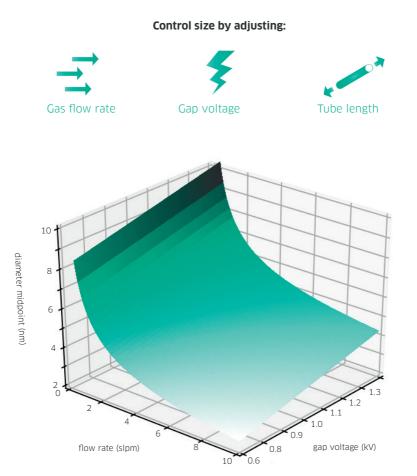
It is possible to use elemental electrodes and alloyed electrodes. Contact us to find out about possibilities of mixing elemental electrodes and compacted alloys.

Elements highlighted in green are compatible with spark ablation. Elements in green may be used in the spark ablation process (e.g. as carrier gas or modifier). Information is available for elements in black.

1 H Hydrogen 1.01																	² He Helium
3	4											5	6	7	8	9	10
Li	Be											В	C	N	0	F	Ne
Lithium 9.94	Beryllium 0.01											Boron 10.81	Carbon 12.01	Nitrogen 14.01	Oxygen 16	Fluorine 19	Neon 20.18
1	12											13	14	15	16	17	18
Na	Mg											AI	Si	Р	S	CI	Ar
Sodium 22.99	Magnesi 24.3											Aluminiun 26.98	Silicon 28.09	Phospho 30.97	Sulfur 32.06	Chlorine 35.45	Argon 39.1
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
К	Ca	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ca	Ge	As	Se	Br	Kr
Potassium 39.95	Calcium 40.08	Scandium 44.96	Titanium 47.87	Vanadium 50.94	Chromium 52	Mangane 54.94	Iron 55.34	Cobalt 58.69	Nickel 58.93	Copper 63.55	Zinc 65.39	Callium 69/72	Germani 72.64	Arsenic 74.92	Selenium 78.96	Bromine 79.9	Kryptor 83.8
37	38	39	40	41	2	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	1	Xe
Rubidium		Yttrium	Zirconium	Niobium		Techneti	Rutheniu.	Rhodium	Palladium	Silver	Cadmium	Indium	Tin	Antimony	Tellurium	lodine	Xenon
85.47	87.52 56	88.91 57-71	91.22 72	92.91 73	95.94 24	98 25	101.07 26	102.91 27	106.42 28	107.87 29	112.41 30	114.82 31	118.71 32	121.76 33	126.9 34	127.6 35	131.29 36
Cs	Ba	57-71	Hf	Та	w	Re	Os	Îr	Pt	AU	Hg	Т	Pb	Bi	Po	At	Rn
Cesium	Barium	Lanthan	Hafnium	Tantalum		Rhenium	Osmium	Iridium	Platinum	Gold	ПВ Mercury	Thallium	Lead	Bismuth	Polonium	AL	Radon
132.91	137.33		178.49	180.95	183.84	186.21	190.23	192.22	195.08	190.97	200.59	204.38	207.2	208.98	209	210	222
37	88	89-103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
Fr	Ra		Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	FI	Мс	LV	Ts	Og
Francium	Radium	Actinoids	Rutherfo	Dubnium	-	Bohrium	Hassium	Meitneri	Darmsta	Rontgium	Copernic	Nihonium	Flerovium	Moscovi	Livermor	Tennesine	-
223	226		262	262	264	266	268	272	277	0	0	0	0	0	0	0	0

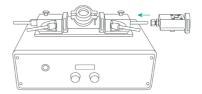
	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
Lanthanoids	La	Ce	Pr	Nd	Pm	Sm	EU	Gd	Tb	Dy	Но	Er	Tm	Yb	LU
	Lanthan	Cerium	Praseod	Neodymi	Promethi	Samarium	Europium	Gadolini	Terbium	Dysprosi	Holmium	Erbium	Thulium	Ytterbium	Lutetiun
	138.91	140.12	140.91	144.24	145	150.36	151.96	157.25	158.93	162.5	164.93	167.26	168.93	173.04	174.97
	89	90	91	92	93	94	95	96	97	98	99	100	101	102	
Actanoids	Ac	Th	Pa	U	Np	Ρu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
	Actinium	Thorium	Protactin	Uranium	Neptuniu	Plutonium	Americiu	Curium	Berkelium	Californi	Einsteini	Fermium	Mendele	Nobelium	Lawrend
	227	231.04	232.04	237	238.03	243	244	247	247	251	252	257	258	259	251

For more information about these elements, go to vsparticle.com/nanoparticles



Control of particle size

CONTROLLING PARTICLE SIZE WITH GAS FLOW AND SPARK ENERGY


The diameter midpoint of the size distribution can be adjusted by controlling flow rate and gap voltage. The graph below shows the correlation between the gas flow, gap voltage and the main mode with the G1 at a fixed distance of the accessory (30 cm) in crossflow-mode. Larger particles can be obtained by heating or by increasing the distance to the accessory.

Immobilizing the particles

DEPOSITING THE NANOPARTICLES ON YOUR SUBSTRATE

The VSP-G1 outputs a clean gas stream filled with pure nanoparticles, ideal for aerosol and toxicity related research. Combining the VSP-G1 with one of the accessories enables you to get the particles out of the gas and onto your substrate for material research.

Flexible offerings

CHOOSE THE OPTION THAT SUITS YOU

The VSPARTICLE sales team is always prepared to think along which option suits you best:

- Buying the VSP-G1 nanoparticle generator
- Leasing the VSP-G1 nanoparticle generator
- Renting the vsparticle lab
- Nanoparticle samples of the material of your choice
- Support from our research team

More remarkable product features

Safe-by-design: The VSP-G1 is developed with safety in mind, as a closed system. The modular reactor head can be unmounted and cleaned easily and safely in a fume hood. The VSP-G1 is compliant with IEC 61010-1 norms for laboratory equipment.

No chemicals needed: The spark ablation process used in the VSP-G1 is a purely physical process that only requires electricity, a carrier gas and electrode material to produce clean nanoparticles. The produced nanoparticles can be directly incorporated into the next process step or applied in a product by, for example, impaction, electrostatic precipitation or filtering.

In your own lab or with vsparticle support: If you wish to set the VSP-G1 up in your own lab, you can opt for either buying or leasing. It is also possible to work in our lab or let vsparticle provide you with some test samples. Just contact our sales team to see which option fits your situation and research best.

Follow us on :

Twitter: @vsparticle LinkedIn: VSPARTICLE

Tech Specs

Operating window

Power Dimensions	110-240V AC Casing ca. 52x30x20cm	Flow rate Gas Supported	1-30 L/min Ar or N ₂ (recommended purity 5.0)				
Reactor added height Weight	ca. 10cm 19kg	Unsupported	He, Ne, Xe, Kr Contact VSPARTICLE				
Gas inlet/outlet	10mm tubes (with Swagelok		for use of reactive gases such as air, H ₂ .				
	connectors)	Electrode material	Supplied with Cu electrodes but most				
Display	16x2 characters		semiconductors can be ordered				
Digital output	RS232	Primary particle size	1 atom to 20 nm				
Relevant lite	rature						
	nanoparticles by spark rizi, N. S. et al., Journal	Ablation rate	~0.01-100 mg/h (material dependent)				
of Nanoparticle 10.1007/s1105	e Research (2009), doi: 51-008-9407-y	Typical particle concentration	10 ⁸ -10 ¹¹ cm ⁻³ (material dependent)				
	nanoparticles a., Advanced Powder 014), doi: 10.1016/j.						

• Atomic Cluster Generation with an Atmospheric Pressure Spark Discharge Generator, Maisser, A. et al., Aerosol Science and Technology (2015), doi: 10.1080/02786826.2015.1080812 Visit vsparticle.com for more information about our distributors

Contact sales@vsparticle.com for any question

Join our discussions on

VSPARTICLE

Molengraaffsingel 10 2629 Delft The Netherlands

